Research interests
- Environmental statistics
- Time series
- Stochastic weather generators, weather type model
- Extreme values
- Data assimilation
- Wind, wave, rainfall
- State-space models
- HMM, Markov-switching autoregressive models,
state-space models
- Parametric estimation (EM and MCEM algorithms,
state-augmentation)
- Non-parametric estimation
- EnKF, Particle filters
Publications

International jounals
- Guillot, J., Ailliot, P., Frénod, E., Ruiz, J., &
Tandeo, P. (2025). State and Stochastic Parameters
Estimation with Combined Ensemble Kalman and Particle
Filters. Monthly Weather Review, 153(7), 1141-1154. article.pdf
-
Obakrim, S., Ailliot, P., Monbet, V.,
& Raillard, N. (2024). EM algorithm for
generalized Ridge regression with spatial
covariates. Environmetrics, 35(6),
e2871. preprint.pdf
-
Platzer, P., Ailliot, P., Chapron, B.,
& Tandeo, P. (2024). Could old tide gauges help
estimate past atmospheric variability?. Climate
of the Past, 20(10), 2267-2286. article.pdf
-
Le Bras, P., Sévellec, F., Tandeo, P.,
Ruiz, J., & Ailliot, P. (2024). Selecting and
weighting dynamical models using data-driven
approaches. Nonlinear Processes in
Geophysics, 31(3), 303-317. article.pdf
-
Tandeo, P., Ailliot, P., &
Sévellec, F. (2023). Data-driven reconstruction of
partially observed dynamical systems. Nonlinear
Processes in Geophysics, 30(2), 129-137. preprint.pdf
-
Obakrim, S., Ailliot, P., Monbet, V.,
& Raillard, N. (2023). Statistical modeling of the
space–time relation between wind and significant wave
height. Advances in Statistical Climatology,
Meteorology and Oceanography, 9(1), 67-81.
article.pdf
-
Boutigny, M., Ailliot, P., Chaubet,
A., Naveau, P., & Saussol, B. (2023). A
meta-Gaussian distribution for sub-hourly
rainfall. Stochastic Environmental Research and
Risk Assessment, 37(10), 3915-3927. preprint.pdf
-
Obakrim, S., Monbet, V., Raillard, N.,
& Ailliot, P. (2023). Learning the spatiotemporal
relationship between wind and significant wave height
using deep learning. Environmental Data
Science, 2, e5. article.pdf
-
Chau, T. T. T., Ailliot, P., Monbet,
V., & Tandeo, P. (2023). Comparison of
simulation-based algorithms for parameter estimation
and state reconstruction in nonlinear state-space
models. Discrete and Continuous Dynamical
Systems-Series S, 16(2), 240-264. preprint.pdf
-
Guillot, J., Frénod, E., &
Ailliot, P. (2023). Physics informed model error for
data assimilation. Discrete and Continuous
Dynamical Systems-Series S, 16(2), 265-276 . preprint.pdf
-
Michel, M., Obakrim, S., Raillard, N.,
Ailliot, P., & Monbet, V. (2022). Deep learning
for statistical downscaling of sea
states. Advances in Statistical Climatology,
Meteorology and Oceanography, 8(1), 83-95.
preprint.pdf
-
Koutroulis, E., Petrakis, G., Agou,
V., Malisovas, A., Hristopulos, D., Partsinevelos, P.,
Ailliot P., Boutigny M. et al. (2022). Site selection
and system sizing of desalination plants powered with
renewable energy sources based on a web-GIS
platform. International Journal of Energy Sector
Management, 16(3), 469-492.
-
Ruiz, J., Ailliot, P., Chau, T. T. T.,
Le Bras, P., Monbet, V., Sévellec, F., & Tandeo,
P. (2022). Analog data assimilation for the selection
of suitable general circulation
models. Geoscientific Model Development
Discussions, 2022, 1-30. article.pdf
-
Chau, T. T. T., Ailliot, P., &
Monbet, V. (2021). An algorithm for non-parametric
estimation in state–space models. Computational
Statistics & Data Analysis, 153, 107062. article.pdf
- Platzer, P., Yiou, P., Naveau, P., Tandeo, P.,
Filipot, J. F., Ailliot, P., & Zhen, Y. (2021).
Using local dynamics to explain analog forecasting of
chaotic systems. Journal of the Atmospheric
Sciences, 78(7), 2117-2133. article.pdf Legrand, J.,
Ailliot, P., Naveau, P., & Raillard, N. (2023).
Joint stochastic simulation of extreme coastal and
offshore significant wave heights. The Annals of
Applied Statistics, 17(4), 3363-3383. preprint.pdf Chau, T. T.
T., Ailliot, P., & Monbet, V. (2020). An algorithm
for non-parametric estimation in state–space models.
Computational Statistics & Data Analysis, 153,
107062. preprint.pdfTandeo,
P., Ailliot, P., Bocquet, M., Carrassi, A., Miyoshi, T.,
Pulido, M., & Zhen, Y. (2020). A review of
innovation-based methods to jointly estimate model and
observation error covariance matrices in ensemble data
assimilation. Monthly Weather Review, 148(10),
3973-3994. preprint.pdf
-
Ailliot, P., Boutigny, M., Koutroulis,
E., Malisovas, A., & Monbet, V. (2020 ).
Stochastic weather generator for the design and
reliability evaluation of desalination systems with
Renewable Energy Sources. Renewable Energy,
Volume 158, October 2020, Pages 541-553. preprint.pdf
-
Ailliot, P., Delyon, B.,
Monbet, V., & Prevosto, M. (2019). Time‐change
models for asymmetric processes. Scandinavian Journal
of Statistics, 46(4), 1072-10 , preprint.pdf
-
Lguensat, R., Tandeo, P., Ailliot, P.,
Pulido, M., & Fablet, R. (2017). The analog data
assimilation. Monthly Weather Review, 145(10),
4093-4107,
paper.pdf
-
Monbet, V., & Ailliot, P. (2017).
Sparse vector Markov switching autoregressive models.
Application to multivariate time series of
temperature. Computational Statistics & Data
Analysis, 108, 40-51. preprint.pdf
-
Bessac J., Ailliot P., Cattiaux J.,
and Monbet V. (2016).Comparison of hidden and observed
regime-switching autoregressive models for
(u, v)-components of wind fields in the northeastern
Atlantic.Advances in Statistical Climatology, Meteorology and
Oceanography, 2, pp 1-16, paper.pdf
-
Ailliot P., Allard D., Monbet V.,
Naveau P. (2015). Stochastic weather generators: an
overview of weather type models. Journal
de la Société Française de Statistique, 156(1),
pp 101-113 , paper.pdf
-
Ailliot P., Bessac J., Monbet V., Pène
F. (2015). Non-homogeneous hidden Markov-switching
models for wind time series. Journal of
Statistical Planning and Inference. 160, pp
75–88, preprint.pdf.
-
Kpogo-Nuwoklo K.A., Ailliot P.,
Olagnon M., Guédé Z., Arnault S. (2015). Improving sea
wave spectrum estimation using the temporal structure
of wave systems.
Coastal Engineering, 96, pp 81-91, preprint.pdf
-
Ailliot P., Pène F. (2015).
Consistency of the maximum likelihood estimate for
Non-homogeneous Markov-switching models. ESAIM: PS, 19, pp
268-292 ,
preprint.pdf
-
Saulquin B., Fablet R., Ailliot P.,
Mercier G., Doxaran D., Fanton d'Andon O.
(2015). Characterization of time-varying regimes in
remote sensing time series: application to the
forecasting of satellite-derived suspended matter
concentrations. IEEE JSTARS, 8(1).
-
Bessac J., Ailliot P., Monbet V.
(2015). Gaussian linear state-space model for wind
fields in the North-East Atlantic. Environmetrics,
26(1) pp 29–38, preprint.pdf
-
Raillard N., Prevosto M., Ailliot P.
(2015). Modeling process asymmetries with Laplace
moving average. Computational Statistics
& Data Analysis, 81, pp 24–37, preprint.pdf
-
Wright C. J., Scott, R. B., Ailliot
P., Furnival D. (2014). Lee wave generation rates in
the deep ocean. Geophysical Research Letter,
41(7), pp. 2434–2440.
-
Raillard N., Ailliot P., Yao J.F.
(2014) Modelling extreme values of processes observed
at irregular time step. Application to significant
wave height. The Annals of Applied Statistics,
8(1), pp. 622-647, preprint
pdf
-
Ailliot P., Maisondieu C., Monbet V.
(2013), Dynamical partitioning of directional ocean
wave spectra. Probabilistic Engineering Mechanics,
33, pp. 95-102, preprint pdf
-
Wright C. J., Scott R. B., Furnival
D., Ailliot P., Vermet F. (2013), Global
Observations of Ocean-Bottom Subinertial Current
Dissipation. Journal of Physical Oceanography,
43, pp. 402-417, preprint pdf
-
Ailliot P., Monbet V., (2012),
Markov-switching autoregressive models for wind time
series. Environmental
Modelling & Software, 30, pp 92-101, preprint pdf
-
Tandeo P., Ailliot P., Autret E.
(2011), Linear Gaussian State-Space Model with
Irregular Sampling - Application to Sea Surface
Temperature. Stochastic
Environmental Research & Risk Assessment 25,
793-804, preprint pdf
-
Ailliot P., Thompson C., Thomson P.
(2011), Mixed methods for fitting the GEV
distribution. Water
Resources Research 47, W0551,
doi:10.1029/2010WR009417, preprint.pdf
-
Ailliot P., Baxevani A., Cuzol A.,
Monbet V., Raillard N. (2011), Space-time models for
moving fields. Application to significant wave height.
Environmetrics,
22(3), pp. 354–369, preprint pdf
-
Ailliot P., Frenod E., Monbet V.
(2010), Modeling the coastal ocean over a time period
of several weeks. Journal
of Differential Equations, 248, pp. 639-659,
preprint pdf
-
Tandeo P., Autret E., Piollé J.F.,
Tournadre J., and Ailliot P. (2009). A multivariate
regression approach to adjust AATSR Sea Surface
Temperature to in-situ measurements. IEEE geoscience and
remote sensing letters, 6(1), pp. 8-12,
preprint.pdf
-
Ailliot P., Thompson C., Thomson P.
(2009), Space time modeling of precipitation using a
hidden Markov model and censored Gaussian
distributions, Journal of the Royal
Statistical Society, Series C (Applied Statistics), 58(3), pp. 405-426,
preprint pdf
-
Monbet V., Ailliot P., Marteau P.F.
(2008), L1-convergence of smoothing densities in non
parametric state space models, Statistical
Inference for Stochastic Processes, 11(3), pp.
311-325, preprint pdf
-
Monbet V., Ailliot P., Prevosto M.
(2007), Survey of stochastic models for wind and
sea-state time series, Probabilistic
Engineering Mechanics, 22(2), pp.113-126. preprint
pdf
-
Ailliot P., Monbet V., Prevosto M.
(2006), An autoregressive model with time-varying
coefficients for wind fields, Environmetrics.
17(2), pp.107-117. abstract,
preprint.pdf
-
Ailliot P., Frenod E., Monbet V.
(2006). Long term object drift forecast in the ocean
with tide and wind, Multiscale Modeling and
Simulation, 5(2), pp 514–531. preprint.pdf
-
Ailliot P. (2006), Some theoretical
results on a Markov-switching autoregressive models
with gamma innovations, Comptes Rendus de
l'Académie des Sciences de Paris, 343(4),
pp 271-274 abstract,
preprint pdf
Book
chapter
- Tandeo P., Ailliot P., Ruiz J., Hannart
A.,Chapron B., Cuzol A., Monbet V., Easton R. and
Fablet R. (2015). Combining analog method and ensemble
data assimilation: application to the Lorenz-63 chaotic
system. Machine Learning and Data Mining Approaches
to Climate Science (Springer), preprint
pdf
PhD
Ailliot P., (2004), Modèles
autorégressifs à changements de régimes markoviens.
Applications aux séries temporelles de vent.
Thèse de l'université de Rennes 1. download
pdf
Past
workshops:
- Colloque "Data
Science pour les risques hydro-climatiques et côtiers",
Roscoff, 31 March-2 April 2025
- Colloque "Data Science
pour les risques côtiers", Roscoff, 13-15 Nov 2023
- Workshop "Machine
learning and uncertainties in climate simulations",
Moulin Mer, 06-09 June 2022
- Colloque "Modèles
spatio-temporels en météorologie et océanographie",
Rennes, 28-30 nov 2018
- Workshop "SWGEN
2018, Stochastic Weather Generators Conference",
Boulder, October 2-4, 2018
- Workshop "Data
Science and Environment", Brest, July 3-7, 2017
- Workshop "Worshop
on Stochastic Weather Generators" , Vannes, May
17-20, 2016
- Workshop "Worshop on
Stochastic Weather Generators" , Avignon,
September 17-19, 2014
- Workshop "Worshop
on Stochastic Weather Generators" May 29th-June
1st, 2012, Roscoff, Britanny
|