Research interests
- Environmental statistics
- Time series
- Stochastic weather generators, weather type model
- Extreme values
- Data assimilation
- Wind, wave, rainfall
- State-space models
- HMM, Markov-switching autoregressive models,
state-space models
- Parametric estimation (EM and MCEM algorithms,
state-augmentation)
- Non-parametric estimation
- EnKF, Particle filters
Publications

Preprint
- Guillot, J., Ailliot, P., Frénod, E., Ruiz, J.,
& Tandeo, P. (2025). State and Stochastic Parameters
Estimation with Combined Ensemble Kalman and Particle
Filters.
International
jounals
- Obakrim, S., Ailliot, P., Monbet, V., & Raillard,
N. (2024). EM algorithm for generalized Ridge regression
with spatial
covariates. Environmetrics, 35(6),
e2871.
- Platzer, P., Ailliot, P., Chapron, B., & Tandeo,
P. (2024). Could old tide gauges help estimate past
atmospheric variability?. Climate of the
Past, 20(10), 2267-2286.
- Le Bras, P., Sévellec, F., Tandeo, P., Ruiz, J., &
Ailliot, P. (2024). Selecting and weighting dynamical
models using data-driven approaches. Nonlinear
Processes in Geophysics, 31(3), 303-317.
- Tandeo, P., Ailliot, P., & Sévellec, F. (2023).
Data-driven reconstruction of partially observed
dynamical systems. Nonlinear Processes in
Geophysics, 30(2), 129-137.
- Obakrim, S., Ailliot, P., Monbet, V., & Raillard,
N. (2023). Statistical modeling of the space–time
relation between wind and significant wave
height. Advances in Statistical Climatology,
Meteorology and Oceanography, 9(1), 67-81.
- Boutigny, M., Ailliot, P., Chaubet, A., Naveau, P.,
& Saussol, B. (2023). A meta-Gaussian distribution
for sub-hourly rainfall. Stochastic Environmental
Research and Risk Assessment, 37(10),
3915-3927.
- Obakrim, S., Monbet, V., Raillard, N., & Ailliot,
P. (2023). Learning the spatiotemporal relationship
between wind and significant wave height using deep
learning. Environmental Data Science, 2, e5.
- Chau, T. T. T., Ailliot, P., Monbet, V., & Tandeo,
P. (2023). Comparison of simulation-based algorithms for
parameter estimation and state reconstruction in
nonlinear state-space models. Discrete and
Continuous Dynamical Systems-Series S, 16(2),
240-264.
- Guillot, J., Frénod, E., & Ailliot, P. (2023).
Physics informed model error for data
assimilation. Discrete and Continuous
Dynamical Systems-Series S, 16(2), 265-276 .
- Michel, M., Obakrim, S., Raillard, N., Ailliot, P.,
& Monbet, V. (2022). Deep learning for statistical
downscaling of sea states. Advances in Statistical
Climatology, Meteorology and Oceanography, 8(1),
83-95.
- Koutroulis, E., Petrakis, G., Agou, V., Malisovas, A.,
Hristopulos, D., Partsinevelos, P., Ailliot P., Boutigny
M. et al. (2022). Site selection and system sizing of
desalination plants powered with renewable energy
sources based on a web-GIS platform. International
Journal of Energy Sector Management, 16(3),
469-492.
- Ruiz, J., Ailliot, P., Chau, T. T. T., Le Bras, P.,
Monbet, V., Sévellec, F., & Tandeo, P. (2022).
Analog data assimilation for the selection of suitable
general circulation models. Geoscientific Model
Development Discussions, 2022, 1-30.
- Chau, T. T. T., Ailliot, P., & Monbet, V. (2021).
An algorithm for non-parametric estimation in
state–space models. Computational Statistics &
Data Analysis, 153, 107062.
- Platzer, P., Yiou, P., Naveau, P., Tandeo, P.,
Filipot, J. F., Ailliot, P., & Zhen, Y. (2021).
Using local dynamics to explain analog forecasting of
chaotic systems. Journal of the Atmospheric
Sciences, 78(7), 2117-2133.
- Legrand, J., Ailliot, P., Naveau, P., & Raillard,
N. (2023). Joint stochastic simulation of extreme
coastal and offshore significant wave heights. The
Annals of Applied Statistics, 17(4), 3363-3383.
- Chau, T. T. T., Ailliot, P., & Monbet, V. (2020).
An algorithm for
non-parametric estimation in state–space models.
Computational
Statistics & Data Analysis, 153, 107062. preprint.pdf
- Tandeo, P., Ailliot, P., Bocquet, M., Carrassi, A.,
Miyoshi, T., Pulido, M., & Zhen, Y. (2020). A review
of
innovation-based methods to jointly estimate model and
observation
error covariance matrices in ensemble data assimilation.
Monthly
Weather Review, 148(10), 3973-3994. preprint.pdf
- Ailliot, P., Boutigny, M., Koutroulis, E., Malisovas,
A., & Monbet, V. (2020).
Stochastic weather generator for the design and
reliability
evaluation of desalination systems with Renewable Energy
Sources. Renewable Energy, Volume 158, October
2020, Pages
541-553. preprint.pdf
- Ailliot,
P., Delyon, B., Monbet, V., & Prevosto, M. (2019).
Time‐change
models for asymmetric processes. Scandinavian Journal of
Statistics,
46(4), 1072-10, preprint.pdf
- Lguensat, R., Tandeo, P., Ailliot, P., Pulido, M.,
& Fablet, R.
(2017). The analog data assimilation. Monthly Weather
Review,
145(10), 4093-4107,
paper.pdf
- Monbet, V., & Ailliot, P. (2017). Sparse vector
Markov switching
autoregressive models. Application to multivariate time
series of
temperature. Computational Statistics & Data
Analysis, 108,
40-51. preprint.pdf
- Bessac J., Ailliot P., Cattiaux J., and Monbet V.
(2016).Comparison of hidden and observed
regime-switching
autoregressive models for (u, v)-components of wind
fields in
the northeastern Atlantic.Advances in Statistical
Climatology, Meteorology
and Oceanography, 2, pp 1-16, paper.pdf
- Ailliot P., Allard D., Monbet V., Naveau P. (2015).
Stochastic weather generators: an overview of weather
type models. Journal de la Société
Française de Statistique, 156(1), pp 101-113, paper.pdf
- Ailliot P., Bessac J., Monbet V., Pène F. (2015).
Non-homogeneous hidden Markov-switching models for wind
time series. Journal of Statistical Planning and
Inference. 160, pp 75–88, preprint.pdf.
- Kpogo-Nuwoklo K.A., Ailliot P., Olagnon M., Guédé Z.,
Arnault S. (2015). Improving sea wave spectrum
estimation using the temporal structure of wave systems. Coastal Engineering,
96, pp 81-91, preprint.pdf
- Ailliot P., Pène F. (2015). Consistency of the maximum
likelihood estimate for Non-homogeneous Markov-switching
models. ESAIM: PS,
19, pp 268-292,
preprint.pdf
- Saulquin B., Fablet R., Ailliot P., Mercier G.,
Doxaran D., Fanton d'Andon O. (2015).
Characterization of time-varying regimes in remote
sensing time series: application to the forecasting of
satellite-derived suspended matter concentrations. IEEE
JSTARS, 8(1).
- Bessac J., Ailliot P., Monbet V. (2015). Gaussian
linear state-space model for wind fields in the
North-East Atlantic. Environmetrics, 26(1) pp
29–38, preprint.pdf
- Raillard N., Prevosto M., Ailliot P. (2015). Modeling
process asymmetries with Laplace moving average. Computational
Statistics & Data Analysis, 81, pp 24–37, preprint.pdf
- Wright C. J., Scott, R. B., Ailliot P., Furnival D.
(2014). Lee wave generation rates in the deep ocean. Geophysical
Research Letter, 41(7), pp. 2434–2440.
- Raillard N., Ailliot P., Yao J.F. (2014) Modelling
extreme values of processes observed at irregular time
step. Application to significant wave height. The
Annals of Applied Statistics, 8(1), pp. 622-647, preprint pdf
- Ailliot P., Maisondieu C., Monbet V. (2013), Dynamical
partitioning of directional ocean wave spectra. Probabilistic
Engineering Mechanics, 33, pp.
95-102, preprint
pdf
-
Wright C. J., Scott R. B., Furnival
D., Ailliot P., Vermet F. (2013), Global Observations
of Ocean-Bottom Subinertial Current Dissipation. Journal
of Physical Oceanography, 43, pp. 402-417, preprint pdf
- Ailliot P., Monbet V., (2012), Markov-switching
autoregressive models for wind time series. Environmental Modelling
& Software, 30, pp 92-101, preprint pdf
- Tandeo P., Ailliot P., Autret E. (2011), Linear
Gaussian State-Space Model with Irregular Sampling -
Application to Sea Surface Temperature. Stochastic Environmental
Research & Risk Assessment 25, 793-804, preprint pdf
- Ailliot P., Thompson C., Thomson P. (2011), Mixed
methods for fitting the GEV distribution. Water Resources Research
47, W0551, doi:10.1029/2010WR009417, preprint.pdf
- Ailliot P., Baxevani A., Cuzol A., Monbet V., Raillard
N. (2011), Space-time models for moving fields.
Application to significant wave height. Environmetrics,
22(3), pp. 354–369, preprint pdf
- Ailliot P., Frenod E., Monbet V. (2010), Modeling the
coastal ocean over a time period of several weeks. Journal of Differential
Equations, 248, pp. 639-659, preprint pdf
- Tandeo P., Autret E., Piollé J.F., Tournadre J., and
Ailliot P. (2009). A multivariate regression approach to
adjust AATSR Sea Surface Temperature to in-situ
measurements. IEEE
geoscience and remote sensing letters,
6(1), pp. 8-12, preprint.pdf
- Ailliot P., Thompson C., Thomson P. (2009), Space time
modeling of precipitation using a hidden Markov model
and censored Gaussian distributions, Journal
of the Royal Statistical Society, Series C
(Applied Statistics), 58(3), pp. 405-426, preprint pdf
- Monbet V., Ailliot P., Marteau P.F. (2008),
L1-convergence of smoothing densities in non parametric
state space models, Statistical Inference for
Stochastic Processes, 11(3), pp. 311-325, preprint pdf
- Monbet V., Ailliot P., Prevosto M. (2007), Survey of
stochastic models for wind and sea-state time series, Probabilistic
Engineering
Mechanics, 22(2), pp.113-126. preprint pdf
- Ailliot P., Monbet V., Prevosto M. (2006), An
autoregressive model with time-varying coefficients for
wind fields, Environmetrics. 17(2),
pp.107-117. abstract,
preprint.pdf
- Ailliot P., Frenod E., Monbet V. (2006). Long term
object drift forecast in the ocean with tide and wind, Multiscale
Modeling and Simulation, 5(2), pp 514–531. preprint.pdf
- Ailliot P. (2006), Some theoretical results on a
Markov-switching autoregressive models with gamma
innovations, Comptes Rendus de l'Académie des
Sciences de Paris, 343(4), pp 271-274
abstract,
preprint pdf
Book
chapter
- Tandeo P., Ailliot P., Ruiz J., Hannart
A.,Chapron B., Cuzol A., Monbet V., Easton R. and
Fablet R. (2015). Combining analog method and ensemble
data assimilation: application to the Lorenz-63 chaotic
system. Machine Learning and Data Mining Approaches
to Climate Science (Springer), preprint
pdf
PhD
Ailliot P., (2004), Modèles
autorégressifs à changements de régimes markoviens.
Applications aux séries temporelles de vent.
Thèse de l'université de Rennes 1. download
pdf
Past
workshops:
- Colloque "Data
Science pour les risques hydro-climatiques et côtiers",
Roscoff, 31 March-2 April 2025
- Colloque "Data Science
pour les risques côtiers", Roscoff, 13-15 Nov 2023
- Workshop "Machine
learning and uncertainties in climate simulations",
Moulin Mer, 06-09 June 2022
- Colloque "Modèles
spatio-temporels en météorologie et océanographie",
Rennes, 28-30 nov 2018
- Workshop "SWGEN
2018, Stochastic Weather Generators Conference",
Boulder, October 2-4, 2018
- Workshop "Data
Science and Environment", Brest, July 3-7, 2017
- Workshop "Worshop
on Stochastic Weather Generators" , Vannes, May
17-20, 2016
- Workshop "Worshop on
Stochastic Weather Generators" , Avignon,
September 17-19, 2014
- Workshop "Worshop
on Stochastic Weather Generators" May 29th-June
1st, 2012, Roscoff, Britanny
|